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Abstract
A secure deduplication technique removes duplicate data and stores only single copy to efficiently utilize the storage while
guaranteeing the privacy of the data. Thus, it is a necessary technology for resource-limited for devices to save storages.
However, most of the existing deduplication schemes based on convergent encryption suffer from 1) a convergent encryption
key management problem and 2) a dynamic ownership management problem. In key management, convergent encryption
generates a number of encryption keys whose size increases linearly with the number of distinct data. In terms of dynamic
ownership management, although the ownership of data in a fog device or cloud storage frequently changes in real-world
applications, supporting ownership changes are difficult because the convergent encryption keys are only bound to the
data. In order to solve these problems, we present a secure deduplication scheme that features reliable and scalable key
management based on pairing-based cryptography and supports dynamic ownership management. The proposed scheme
avoids additional costs associated with distributing key components on secure channels and ownership keys on the user side
yet guarantees secure key and ownership management.

Keywords Fog computing security · Fault tolerant key management · Dynamic ownership · Secure deduplication

1 Introduction

Fog computing [1, 2] is a promising solution to challenges
of the upcoming era, in which numerous IoT devices will
be around us and a vast amount of data will come from
them. Since fog devices are geographically close to IoT
devices, a fog computing paradigm can reduce the latency
of data transmission and can promptly process requests

� Kyungtae Kang
ktkang@hanyang.ac.kr

� Junbeom Hur
jbhur@korea.ac.kr

Hyunsoo Kwon
hs kwon@korea.ac.kr

Changhee Hahn
hahn850514@korea.ac.kr

1 Department of Computer Science and Engineering,
Korea University, Seoul, 02841, Republic of Korea

2 Department of Computer Science and Engineering,
Hanyang University, Ansan 15588, Republic of Korea

received from these devices. Thus, the fog computing is
well-suited for various applications, such as healthcare
systems that require the immediate processing of protected
health information from a variety of wearable devices such
as smartwatches, smart bands, and sensors installed to check
human health conditions inside a home or hospital [3].
However, as resource-constrained fog devices gather huge
volumes of data, including duplicated copies, from IoT
devices, there is a need for a method to make efficient use
of storage.

The deduplication technique, which eliminates redundant
copies and owns only a single copy, is suitable for utilizing
a repository efficiently. This approach decreases storage
management costs and saves 50–90% of storage [4–6]. In
particular, in client-side deduplication, since a fog device
uses small pieces of information to inspect the replicated
data and the client does not upload any data if it already
exists in the fog device, this approach also reduces the use
of bandwidth for data upload.

Despite this usefulness, however, users may be concerned
about their data privacy because once users upload their
data to the fog device, they will not be able to control
such data. While this can be clearly solved by outsourcing
the encrypted data to the fog device, this strategy may
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conflict with the deduplication technique. Unfortunately,
in traditional cryptography, deduplication is not applicable
because each user uses different private keys, resulting
in different ciphertexts for the same data. To overcome
this dilemma, a secure deduplication technique using the
convergent encryption (CE) [5] scheme was proposed. In
the CE scheme, since the encryption key is derived from
the data in a deterministic way, multiple users who have the
same data can generate the same encryption key, and the
same ciphertext. Therefore, CE can be deployed in a secure
deduplication technique. Although many CE-based secure
deduplication schemes [11–17] have been proposed, most
of the schemes suffer from 1) a convergent encryption key
(CEK) management problem and 2) a dynamic ownership
management problem.

In terms of the CEK management problem, because the
CE generates the same number of CEKs as the number
of unique data instances to be encrypted, the user must
manage and own a number of CEKs to decrypt ciphertext
after obtaining it from a fog device that leverages cloud
storage. Anticipating the upcoming high-volume data era,
the tremendous increase in the number of encryption
keys will be even more problematic for IoT devices.
Moreover, if the user does not manage the CEK securely
or it is compromised, then his/her ciphertexts may be
unrecoverable or leak to malicious users (that is, a reliability
problem). In order to support reliable CEK management,
a secure deduplication scheme, namely Dekey [17], was
proposed. Dekey makes users generate and distribute pieces
of CEKs across multiple cloud servers exploiting a secret
sharing scheme [18]. When users want to recover the
original CEK, they can recover it from a predefined number
of pieces instead of storing the entire CEK in the local
storage of the user. This can reduce storage costs on the
user side and present fault-tolerant key management robust
to single-point-of-failure problems. However, Dekey has a
strong assumption about the distribution of key shares. If the
shares are transmitted over a public channel, anyone who
collects a predefined number of shares will be able to access
the entire CEK Therefore, in Dekey, users and multiple fog
devices (or cloud servers) must set up secure channels using
independent cryptographic protocols such as the transport
layer security protocol for CEK distribution as well as CEK
retrieval. However, according to our experiments, setting up
a secure channel increases the computation/communication
overhead to a non-negligible level. Since the number of
secure channels to be established increases linearly with the
number of fog devices, this can incur a scalability problem.

In terms of the dynamic ownership management prob-
lem, in a secure deduplication technique, once the users
lose their ownership of the original data by deletion or
modification, they should no longer be able to decrypt the
original ciphertext. Such ownership changes to outsourced

data are very common in real-world cloud storage envi-
ronments [30] and need to be handled carefully to prevent
unauthorized access. Hur et al. [11] proposed a secure dedu-
plication scheme that leverages a re-encryption technique
of ciphertexts featuring ownership group key management
to prevent revoked users from accessing the data. However,
their scheme incurs communication overhead linearly as the
number of the universe of users increases. In addition, this
approach suffers from the CEK management problem.

To resolve these problems, we extend our previous work
[31] to present a secure deduplication scheme featuring
reliable and scalable CEK management based on pairing-
based cryptography, and dynamic ownership management.
In our previous scheme [31], for CEK management, we
split the CEK into the three key components and allowed
only legitimate data owners to obtain the shared secret,
which is used as a masking value in the key component
distribution, via an independent server. CEK cannot be
recovered unless the adversaries who collect key shares on
the public channel know this masking value. Furthermore,
the three key components are designed to free the user
from the burden of managing the key and reduce overall
system computation/communication costs. Unlike Dekey,
legitimate data owners can retrieve the CEK, and hence the
plain data, by eliminating the masking value after collecting
key shares from the fog devices without having to establish
a secure connection. For dynamic ownership management,
in the proposed scheme, we employ re-encryption technique
and privilege-based encryption (PE). Cloud storage chooses
a random key to re-encrypt the ciphertext encrypted under
CE. Then, it encrypts that random key using PE such
as attribute-based encryption [33–35], which allows only
authorized users to decrypt the re-encrypted data.

The main contributions made by this paper are summa-
rized below:

1. We present a secure deduplication scheme that produces
reliable and scalable CEK management. With respect
to CEK management, we split the CEK into three
key components: a pairing key, shared secret, and
partial key. Since this key component management is
performed by external entities, it reduces the burden on
the user’s CEK management. In addition, by leveraging
a secret sharing scheme, we improve the reliability of
the CEK.

2. Our scheme is resilient against offline brute-force
attacks even if the plaintext belongs to a predictable data
set. This is accomplished by employing an oblivious
pseudo-random function with the key server as in
previous schemes, such as DupLess [15].

3. We eliminate the requirement for additional secure
channels for distributing the key components by
exploiting pairing-based cryptography. Thus, the
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privacy of CEKs is protected even when they are
transferred through public channels. Therefore, when
distributing the CEK, unlike previous scheme, the pro-
posed scheme does not incur extra costs in terms of
placing a secure channel.

4. The proposed scheme supports dynamic ownership
management. Thus, if users lose their ownership to
data, they are prevented from decrypting the original
plaintext. According to a security analysis, the proposed
scheme guarantees forward/backward secrecy [11] and
collusion resistance.

5. We implement the proposed scheme to analyze
efficiency. The experimental results indicate that the
proposed scheme outperforms the previous schemes in
most real-world scenarios. This demonstrates that the
proposed scheme is more scalable than the previous
ones.

2 Related work

2.1 Convergent encryption

Convergent encryption (CE) allows users to obtain a
convergent encryption key (CEK) from the plaintext
to be encrypted. If the plaintext is identical, then the
same ciphertexts are produced, which is a desirable
property for deduplication over ciphertext. Various secure
deduplication schemes [14–16] based on CE have been
proposed. However, a recent study [15] reported that when
the plaintext is predictable, CE’s deterministic property
makes the ciphertexts vulnerable to brute-force attacks.
As a solution, DupLESS [15], produces CEKs in a non-
deterministic way by leveraging an oblivious pseudo-
random function [19] with the key server so that only
valid data owners can get the corresponding CEK without
leakage of information of the key. This randomization of
CEK prevents brute-force attacks even though the plaintext
is chosen from a predictable set. Nevertheless, it also suffers
from the CEK management problem. As the number of
data instances increases, the overhead needed for secure key
distribution impedes the deployment of these schemes in
pragmatic settings.

2.2 Reliable deduplication

When employing deduplication techniques, managing only
one copy of data implies that its loss can lead to the
elimination of all records. To solve this problem, several
schemes [13, 17, 21] have been proposed. Among them,
Li et al. introduced a secure deduplication scheme called
Dekey [17], which utilizes a secret sharing technique
to enhance the reliability of the CEK and decrease the

overhead for key management. Because anyone can retrieve
the CEK by collecting the shares from a public channel,
Dekey should send all key shares via additional secure
channels. This unavoidable requirement of additional secure
channels incurs a non-negligible overhead. Hence, a secure
deduplication scheme supporting efficient and scalable
key management is required while preserving the privacy
of both data and key shares without employing secure
channels.

2.3 Deduplication with dynamic ownership
management

When a user’s ownership of certain data is lost (e.g., by
deletion), cloud storage must block the user’s access to
that data immediately. In CE-based deduplication, however,
this is a challenging problem. Because the encryption
key is derived from the data, even a revoked user who
has lost ownership of the data can still access and
decrypt it as long as he/she keeps the encryption key.
In order to simultaneously support dynamic ownership
management and deduplication, several schemes [11, 32]
have been proposed. Since the strategy of handling
ownership management in both schemes are the same,
we focus on Hur et al.’s scheme, which is the first
secure deduplication scheme that prevents revoked users
from accessing data through a re-encryption technique
using an ownership group key. In their scheme, the
user owns the path keys for obtaining the group key.
This may incur additional non-negligible storage and
communication overhead, especially when the number of
users is large. Furthermore, the CEK management problem
is inherited in this scheme. Thus, we aim to construct
a secure deduplication scheme that presents scalable
ownership management while minimizing additional user
side overhead.

3 System description and security goals

3.1 Systemmodel

A system consists of five entities: user, key server (KS),
index service provider (IS), cloud storage (CS), and fog
devices (FDs). Figure 1 illustrates the system architecture of
the fog computing system.

A user desires to upload his/her data into CS in order to
save on local storage. Before outsourcing the data, he/she
encrypts it using CE for deduplication of ciphertext. The
user cooperates with the other entities to manage the CEK
reliably, efficiently, and securely. In addition, the user owns
the privilege key corresponding to his/her ID for user
dynamic ownership management. When a user eliminates
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Fig. 1 System model

the ciphertext in CS, his/her privilege key becomes invalid
for that data, so the revoked user can no longer decrypt the
ciphertext even with the CEK.

The Key Server (KS) takes two different tasks from the
system. First, it signs the CEK to improve the privacy of
the outsourced data against an offline brute-force attack.
Second, it maintains the partial keys obtained from users to
diminish overhead for managing the CEK.

The Index Service Provider (IS) creates the shared
secret and transmits it to users so that those who upload the
same data receive the same shared secret. In addition, the IS
maintains the index idx of each CEK to allow both the KS
and the IS to hold one key component corresponding to the
data, and checks whether a user is authorized to obtain the
idx.

Cloud Storage (CS) presents a data outsourcing service
to users and manages the data on their behalf. CS employs a
deduplication technique to avoid duplicated data storage. In
terms of ownership management, CS generates a privilege
key for each registered user and encrypts the random key,
which is used to re-encrypt the ciphertext using privilege-
based encryption. In this paper, we state that CS manages
the outsourced data and ownership.

Fog Devices (FDs), in terms of CEK management,
maintain secret shares of pairing key and distribute them
to users for reliable and efficient key management. Since
FDs are geographically close to the user, the network
latency between them can be reduced compared to the
communication between the user and CS. Therefore, they

can respond more rapidly to a request of the pairing key
shares of the users.

3.2 Threat model

We assume that there are two kinds of adversary 1) an inside
adversary and 2) an outside adversary. An inside adversary
is a legal system entity, and is thus allowed to access the data
it stores and manages. In our system model, the CS, FD,
and KS are regarded as potential inside adversaries. Inside
adversaries who are considered curious-but-honest perform
their tasks accurately but desire to know the secret data of
the user. In addition, CS, FD, and the KS can conduct a
collusion attack to reveal the user’s CEK.

An outside adversary wants to illegally acquire useful
information about users’ data and the random keys chosen
by the CS. They can cooperate with a legal user whose
access rights are valid to acquire private data. Outside
adversaries who are considered malicious users try to obtain
original data that he/she does not own without proper
privilege to satisfy the access policy of the ciphertext.

The adversaries can undertake a collusion attack with
other users who do not have access rights in order to obtain
the key used for re-encryption by combining their invalid
privilege keys to satisfy the access policy.

We assume that the IS is fully trusted and complies with
the specification of the proposed scheme. In other words, the
IS does not collude with any insider or outside adversaries.
As the IS must identify authorized users who have the data
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from adversaries who do not and thus selectively provide the
shared secret, it must remain a trusted entity. The presence
of a trusted entity has been approved in various fields [23–
25] to accomplish varied security goals and is also required
by the secure deduplication scheme [14].

3.3 Security goal

We aim to achieve four security goals: data security,
convergent encryption key security, forward/backward
secrecy [11], and collusion resistance.

Data confidentiality and integrity The proposed scheme
has to guarantee the privacy of outsourced data against
adversaries who do not have the same data in CS.
Data confidentiality must be resilient even though the
adversaries try to conduct a dictionary attack on plaintext
that is selectable from a predictable data set. In order
to guarantee the integrity of the data (or tag consistency
[10]), our scheme must distinguish and block duplicate
faking attacks [10]. These attacks arise when adversary
outsources maliciously produced ciphertext c1 instead of
honestly encrypted data c2 such that the tag of c1 is equal
to the tag of c2. Thus, through deduplication the user who
outsourced c2 might receive the wrong ciphertext c1.

Convergent encryption key security We divide the CEK
into three key components: the pairing key, the shared
secret, and the partial key. Each key component is sent
to three different types of entities. The pairing key is
divided into n shares, which are transmitted to n FDs. The
shared secret and partial key are transferred to the IS and
KS, respectively. The proposed scheme should protect the
privacy of these three key components despite their being
sent on public channels and although the adversaries collude
with semi-trusted entities such as KS, CS, or FD.

Forward and backward secrecy [11] For secure dynamic
ownership management, the proposed scheme should ensure
forward/backward secrecy. In the context of ownership
management for deduplication, forward secrecy means
preventing revoked users who have deleted or modified the
data from decrypting the ciphertext. Conversely, backward
secrecy means preventing users who outsource the same
data from decrypting the corresponding ciphertext before
they have proven their ownership.

Collusion resistance The proposed scheme should forbid
unauthorized users who do not have legitimate data
ownership from decrypting and obtaining the original data
even if they conduct a collusion attack using their privilege
key.

4 Proposed scheme

4.1 Preliminaries

We commonly denote variables by lowercase letters (e.g.,
a, b, c), algorithms by uppercase letters (e.g., A, B, C), and
sets by blackboard bold letters (e.g., G,Z). Additionally, we
denote by a ← A the assignment of a as the deterministic
result of algorithm A, and denote by a ∈R A the assignment
of a as a random selection from the set A. The one-time
symmetric encryption SE [37] consists of a deterministic
encryption algorithm EncSE and a decryption algorithm
DecSE . With the random key K ∈R {0, 1}k and data M , the
encryption and decryption algorithms output the ciphertext
C = EncSE(M, K) and plaintext P = DecSE(C, K),
respectively.

4.1.1 Bilinear maps

Let G and GT be two multiplicative cyclic groups of prime
order p, and g be a generator of G. Let a bilinear map ê be
a map ê: G × G → GT , with the following properties:

– Bilinearity: For all u, v ∈ G and a, b ∈ Zp, ê(ua ,
vb)= ê(u, v)ab

– Computability: There exists an efficient algorithm to
compute map ê

– Non-degeneracy: ê(g, g) �= 1.

4.1.2 Convergent encryption

The CE scheme [10] consists of the following four
algorithms: GenCE , EncCE , DecCE , GenT ag .

– ck ← GenCE(D): Taking data D, it outputs CEK
ck ← H(D), where H(·) is the cryptographic hash
function.

– C ← EncCE(D, ck): Taking D and ck, it encrypts D

using a symmetric and deterministic encryption scheme
with the ck generated from GenKey and outputs the
ciphertext C.

– D ← DecCE(C, ck): Taking C and ck, it decrypts C

inversely and outputs the plaintext D.
– T ← GenT ag(C): Taking C, it outputs tag T ← H(C).

4.1.3 Oblivious-pseudo random function

To sign the hash value we employ an oblivious-pseudo
random function (O-PRF) protocol based on the RSA blind
signature [15]. The O-PRF consists of the following four
algorithms: GenRSA, SignU , SignS, V erSign.

– (pks, sks) ← GenRSA(e): Taking RSA exponent
e, it outputs the KS’s key pair (pks, sks) =
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((N, e), (N, d)), where ed ≡ 1 mod φ(N), N is the
product of two distinct prime numbers.

– σ ← SignU(D, pks)
$→ SignS(sks): The two

interactive algorithms take (D, pks) and sks as inputs,
respectively. SignU run by the data owner derives the
hash value h from the data D and randomly chooses the
value r ∈R ZN

∗. Then, the resulting blinded hash value
x = h · re mod N is fed into SignS . Upon receiving
x, SignS run by the KS computes y = xd mod N and
returns y to SignU . The result of the two interactive
algorithms is a signed hash value σ = y · r−1 mod N =
(h · re)d · r−1 mod N = hd mod N .

– (σ/⊥) ← V erSign(σ, h): Taking the signed hash value
σ and h, it outputs σ if h = σe mod N , ⊥ otherwise.

4.1.4 Proofs of ownership

The proofs of ownership (PoW) enables the user to
efficiently verify the ownership of the outsourced data
without delivering all the data.

In PoW, the prover who claims to have access to the
outsourced data constructs a Merkle tree. The prover divides
the entire set of data into multiple blocks and uses a
collision-resistant hash function to produce the hash values
of the grouped blocks in pairs. It then groups the hash values
iteratively into pairs and hashes each pair from the leaf
nodes into the root node. After repeating this process, the
prover can earn a single hash value for all of the data, which
matches to the root node and all the blocks derived from the
data corresponding to the leaves.

The verifier keeps the root and the number of leaves
in the Merkle tree, while the prover maintains the entire
Merkle tree. To check that the prover indeed owns the data,
the verifier randomly selects r leaf indexes as a challenge
message and transmits them to the prover. Then, the prover
collects the sibling-path which consists of all hash values
needed to generate the root hash value from the particular
leaves matching to each leaf index in the challenge message,
and sends it to the verifier. After obtaining the sibling paths
for the challenge message, if the verifier can construct the
root hash value from them, it ensure that the prover really
has the data. Otherwise, the request from the prover is
denied.

4.1.5 Ramp secret sharing scheme

We employ the (n, k, r)-secret sharing scheme, which
produces n shares on the secret value, as an input. This
scheme satisfies the following two conditions: (1) The
secret value is restorable when the number of collected
shares is greater than or equal to k; otherwise, it is not
restorable. (2) No one can deduce any information about

secret values from the shares less than r , where n >

k > r ≥ 0. The secret sharing scheme consists of two
algorithms: Share and Recover.

Share(·) splits an input value into (k − r) shares and
randomly selects r shares. It then encodes the k shares
into n shares, and finally outputs n shares. However, since
each share is randomly selected, which obstructs share
deduplication, it is not applicable to our scheme. Therefore,
we create the r shares using the pseudo-random approach as
in Dekey [17].

Recover(·) outputs the original secret value on input k of
n shares.

4.1.6 Privilege-based encryption

In conventional symmetric and asymmetric encryption, data
can be encrypted to only a designated user. In order to
overcome this limitation, privilege-based encryption (PE)
was proposed. PE encrypts data for an arbitrary set of
users. There are various types of PE, such as identity-based
encryption (IBE) [36], attribute-based encryption (ABE)
[35], and ciphertext/key-policy attribute-based encryption
(CP/KP-ABE) [33, 34]. Since the ciphertext is generated on
the basis of a set of privileges, PE can enforce access poli-
cies on the ciphertext without prior knowledge of the recip-
ients. In the proposed scheme, we employ the PE scheme,
especially CP-ABE [33], which consists of the following
four algorithms: SetupPE, GenPE, EncPE, DecPE .

– PC ← SetupPE(λ): Taking security parameter λ, it
generates the master key PC owned by CS.

– PU ← GenPE(SetU ): Taking SetU as the set of users
who are registered to CS, it generates privilege keys
PU for each user’s ID. CS then distributes them to the
registered users.

– C ← EncPE(D, A): Taking D and the access policy
A constructed by CS, it encrypts D using a privilege-
based encryption and outputs the ciphertext C.

– D ← DecPE(C, PU): Taking C and PU , it decrypts C

and outputs the plaintext D as long as PU satisfies A.

4.2 Scheme construction

4.2.1 System setup

A user generates his/her private and public key pair (sk, pk).
The user randomly chooses x ∈R Zp

∗ as a secret key sk

and obtains public key pk = gx−1
. The KS owns its secret

key sks = (d, N) and public key pks(e, N) by running
GenRSA. To leverage PE, the CS runs SetupPE(λ) and
GenPE(SetU ), where λ is the security parameter in the
system, and SetU is the set of the users in the system.
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4.2.2 Data upload process

The user computes the CEK by following the O-PRF
protocol with the KS. Then, he/she obtains the ciphertext
using CE with the CEK and computes its tag in order to
check whether a duplicate copy exists in CS.

After uploading the ciphertext, the user starts the CEK
distribution process, and the CS re-encrypts the data using
privilege-based encryption with a randomly selected key
for ownership management. Figure 2a illustrates the data
upload process, which is described as follows:

Generate a signed hash value hd : To acquire the CEK,
a user follows the O-PRF protocol with the KS. SignU ,
run by the user, interacts with the SignS run by the KS for
given input data D and the key pair of KS (sks, pks), and
outputs σ . If σ is accepted by V erSign for given inputs
σ and hash value h, σ can considered as a signed hash
value hd .
Outsource the ciphertext and its tag: After generating
hd , the user can derive a CEK ck ← G(hd), where
G: Z

∗
N → {0, 1}∗. The user obtains the ciphertext

C ← EncCE(D, ck) and computes tag T ← H(C).
Then, he/she transmits T to CS to check whether it is
duplicated.
Identify the duplicate copy: On receiving T , CS tests
for the existence of a duplicate record and returns
the resulting of checking to the user. If there is a
duplicate copy, the user begins the CEK distribution
process. Otherwise, the user transmits C and T to CS.
After passing the test for checking whether T was
precisely generated from C, the user embarks on the CEK
distribution phase. Otherwise, CS denies the request for
uploading the data.
Re-encrypt the outsourced data: To support dynamic
ownership management for an outsourced ciphertext C,

when the user uploads the ciphertext to CS, CS randomly
chooses a key kc ∈R {0, 1}k and obtains ciphertext
C′ ← EncSE(C, kc). Then, CS defines the access policy
A with the set of authorized users and gets encrypted key
Ck ← EncP (kc, A).

4.2.3 CEK distribution

In the CEK distribution phase, the user generates the pairing
key and transmits it to the IS. Then, the IS computes a
blinded shared secret and returns it to the user. After taking
it, the user deduces the shared secret. (All owners of the
same data will obtain the same secret at this point.) The user
computes the partial key and sends it to the KS. Finally, the
user splits the pairing key into n shares exploiting the secret
sharing scheme, and transmits n shares to n distributed FDs.
Figure 3a illustrates the CEK distribution process. The CEK
distribution procedure is described as follows:

Generate the pairing key pak: The user computes the
pairing key pak = ê(g, g)sh, where sh ← F(hd) and
F : ZN → Zp, and transmits it to the IS.
Identify the authorized user: On receiving pak, the IS
computes an index idx ← H(pak) and retrieves idx

from the index database. If idx exists, it means that the
user has uploaded duplicate data to CS. In this case,
he/she is not obliged to send the CEK because someone
who uploaded the same data has already created and
sent the CEK to FD. Then, the IS uses the proofs-of-
ownership (PoW) protocol [22] to check whether he/she
owns the data corresponding to idx or not. After that,
only an authorized user is enrolled in the database and
finishes the CEK distribution successfully. Otherwise,
the requests from unauthorized users are denied. If idx

is not detected, the user (considered an initial uploader)
transmits the root hash value of the Merkle tree of the

Fig. 2 Data upload/download process



www.manaraa.com

Peer-to-Peer Netw. Appl. (2019) 12:850–864 857

Fig. 3 CEK management

ciphertext to the IS. The IS then selects the random
value u ∈R Zp and generates the blinded shared secret
bss = ê(g, pk)u using the user’s public key pk so that
only authorized users can obtain the shared secret from
bss. After that, it sends bss and idx to the authorized
user, who uploads the non-redundant data and enrolls the
user in the database.
Compute the partial key kp: On receiving idx and bss,

the user obtains the shared secret ss = (
ê(g, pk)u

)sk =
ê(g, g)u and generates the partial key kp ← hd ⊕H(ss ·
pak), where H is the cryptographic hash function. The
partial key is needed to obtain the CEK in the CEK
retrieval phase. After transmitting kp that connotes hd to
the KS with idx, to use the storage efficiently, he/she
then removes the partial key from his/her local storage.
The KS then maintains idx and kp in the database.
Distribute n shares: In order to enhance the reliability
of the CEK, by leveraging the secret sharing scheme,
the user has divided pak into n shares. For a given
input pak, the user runs the Share(·) function and
acquires ceki (1≤i≤n) ←Share(pak). After that, the
user distributes the shares ceki to n FDs on a public
channel and terminates the CEK distribution process
successfully.

4.2.4 CEK retrieval

In order to obtain the original data from the ciphertext,
the user has to retrieve the CEK from some of the secret
shares ceki , which are maintained in n of distributed FDs.
According to a property of the secret sharing scheme,
after the user collects k of n shares from FD, he/she can
restore the CEK from it. In other words, even if (n-k) of
the FDs lose their shares, the CEK can still be retrieved
from the collected k shares. Figure 3b illustrates the CEK
retrieval process. The CEK retrieval procedure is described
as follows:

Collect k of n ceki : After collecting k of n ceki from FD,
the user uses the Recover(·) function to restore pak =
ê(g, g)sh ← Recover(ceki)(k≤i).
Obtain the signed hash value hd : The following
procedure is similar to the process of CEK distribution.
To acquire the index idx and blinded shared secret
bss = ê(g, pk)u, the user transmits pak to the IS. After
that, only authorized users registered in the database can
obtain the bss and idx, and generate the shared secret
ss = ê(g, g)u. The user then sends idx to the KS
and receives the partial key kp corresponding to idx.
Subsequently, he/she can obtain the signed hash value hd

by the calculation below:

kp ⊕ H(ê(g, g)sh · ê(g, g)u)

= hd ⊕H(ê(g, g)sh ·ê(g, g)u)⊕H(ê(g, g)sh ·ê(g, g)u)

= hd .

Now the user computes ck ← G(hd) and is ready to
decrypt the ciphertext downloaded from CS.

4.2.5 Data download process

In the data download phase, the user downloads the
ciphertext pair C′, Ck and tag T from the CS. The user
who has a valid privilege key PU , which means his/her
PU satisfies the embedded access policy A, can obtain
kc ← DecPE(Ck, PU). After that, the user computes
C ← DecSE(C′, kc), which is the original ciphertext
encrypted by CE. To decrypt C, the user has to restore
the CEK in the CEK retrieval process, as explained in the
previous subsection. After computing the CEK ck, he/she
can obtain the original plaintext D ← DecCE(C, ck) from
the ciphertext C. Figure 2b illustrates the data downloading
process.



www.manaraa.com

858 Peer-to-Peer Netw. Appl. (2019) 12:850–864

Fig. 4 Encrypted key update

4.2.6 Encrypted key update

To manage the dynamic ownership securely, CS performs
an encrypted key update when a new user uploads redundant
data or an existing owner deletes his data. If a joining or
revocation event occurs, CS first selects the new random
key k′

c ∈R {0, 1}k and updates the access policy A with the
new set of valid users. After that, CS refreshes the ciphertext
pair C′′ ← EncSE(DecSE(C′, DecPE(Ck, Pc)), k

′
c) and

encrypted key C′
k ← EncPE(k′

c, A) using the privilege-
based encryption scheme. Since the ciphertext pair is re-
encrypted with newly generated parameters such as k′

cand
A, only a user with a qualified privilege key is allowed to
obtain and decrypt the ciphertext in CS. Figure 4 illustrates
the encrypted key update process.

5 Analysis

5.1 Comparison of secure deduplication schemes

Table 1 compares CE-based secure deduplication schemes
in terms of data deduplication with regard to ciphertext,
reliable key management, and ownership management . All
of the above schemes allow CS to perform deduplication
on ciphertexts by leveraging CE. Dekey [17] and the

Table 1 Comparison results of secure deduplication schemes

Scheme Deduplication Reliable Ownership

on ciphertext key management management

Dekey [17] Yes Yes No

Hur et al. [11] Yes No Yes

Proposed Yes Yes Yes

proposed scheme allow users to distribute CEK shares
on multiple FDs and recover the original CEK using a
secret sharing scheme, so reliable key management is
guaranteed. Regarding ownership management, whenever
any ownership for some data changes, Hur et al.’s scheme
and the proposed scheme can immediately update the
ownership list and re-encrypt that data. Thus, only valid
users can decrypt the ciphertext.

5.2 Security analysis

We analyze the security of the proposed scheme in terms of
the security requirements defined in Section 3.3.

5.2.1 Data confidentiality and integrity

In terms of data confidentiality, there are two types of
adversaries (outside adversaries and inside adversaries) who
desire to disclose the outsourced data that they do not have
in CS. Outside adversaries, despite being able to acquire the
signed blinded hash value y = hd · r mod N through public
channels, cannot obtain the signed hash value hd without
knowledge of r , which is a random value selected by an
authorized user.

Furthermore, since the hash value of the plaintext, used
as an encryption key, looks random to the outside attacker
by running O-PRF with the KS, the proposed scheme is
secure against an offline brute-force attack even if the data
is predictable. Although outside adversaries guess some
hash values for predictable data, KS prevents them from
obtaining the signed hash value by masking it.

We can regard inside adversaries as being stronger adver-
saries than outside adversaries since they can additionally
exploit the information they control, such as the KS’s pri-
vate key d. Then, the proposed scheme is no longer secure
against offline brute-force attacks against data selected from
the predictable set because they can generate the signed
hash values of the predictable data. Nevertheless, inherit-
ing DupLESS [15] can guarantee the security of the CE, so
the proposed scheme provides data privacy against offline
brute-force attacks on the data selected from unpredictable
set [10].

In terms of data integrity (that is, tag consistency), a
user derives a tag from the ciphertext rather than plaintext
before uploading it. Since the tag is generated from the
encrypted data, CS can determine whether it is derived from
the corresponding ciphertext or not. If it does not match,
CS denies the uploading request. Moreover, on receiving the
ciphertext pair from CS, it also allows the user to check the
association between the ciphertext and its tag. Because both
the user and CS can identify the correct tag in the fake tag,
our scheme provides data integrity for the outsourced data
by employing tag consistency [10].



www.manaraa.com

Peer-to-Peer Netw. Appl. (2019) 12:850–864 859

5.2.2 Convergent encryption key security

In the proposed scheme, CEK is divided into three key
components that are sent on public channels. In this section,
we determine whether our scheme provides privacy for the
three key components against attackers even when they
collude with the CS, FD, or KS.

Pairing key For a given input hd , the user computes the
pairing key pak = ê(g, g)sh, where sh ← F(hd).
Then, he/she splits pak into n shares by employing a
secret sharing scheme and sends them to n distributed FDs.
Although after the adversaries have gathered k of n shares,
the information restored from the shares is only the pairing
element ê(g, g)sh. Under the discrete logarithm assumption,
the adversary cannot deduce sh from the ê(g, g)sh. Thus, it
prevents the exposure of secret information and guarantees
the security of the pairing key even if the shares are sent via
public channels.

Shared secret The IS generates the shared secret ê(g, g)u

using pairing exponentiation and distributes it to allow
only authorized users who have the same data in CS to
obtain a secret value from the blinded shared secret. When
generating the shared secret, by using the requested user’s
pk, the IS ensures that the shared secret is not exposed
by masking it as follows: ê(g, pk)u = ê(g, g)

u
x , where

(sk, pk) = (x, gx−1
) is the user’s key pair. At this step, the

IS confirms that the user who asks the shared secret has
the data corresponding to the pairing key using the PoW
[22] protocol. By leveraging the PoW protocol, the IS can
prevent the shared secret from being leaked to a malicious
user who has no data in CS. Since the hardness of obtaining
the shared secret ê(g, g)u from the blinded shared secret is
equivalent to solving the discrete logarithm assumption even
if the blinded shared secret is sent on public channels, the
proposed scheme guarantees the privacy of the shared secret
unless the private key of the user is compromised.

Partial key The partial key is generated from the CEK, the
pairing key, and the shared secret by using a group operation
on GT . If the adversaries who do not have the data cannot
obtain the shared secret from the blinded shared secret, then
they cannot obtain the signed hash value hd . The partial
key’s security is guaranteed as long as the shared secret is
not revealed to the adversary.

Thus, our scheme provides privacy for the three key
components of the CEK even when they are sent via public
channels.

5.2.3 Forward and backward secrecy

In terms of forward secrecy, a user who loses his/her access
rights to the encrypted data in CS should be prevented
from obtaining the corresponding plaintext. When the user
deletes or modifies the outsourced data, CS updates the
access policy A with a set of the valid user’s privilege
keys and re-encrypts the ciphertext from C′ to C′′ with a
randomly selected key k′

c. Then, k′
c is securely distributed

to the set of valid owners using PE under the updated A.
Thus, the revoked user cannot decrypt such re-encrypted
ciphertext because his/her privilege key cannot satisfy A

that has been updated. Even if the users recover CEK
through the CEK retrieval process and hide it before losing
ownership, they are unable to acquire the plaintext because
they cannot decrypt the ciphertext that has been encrypted
by CS. Thus, the proposed scheme ensures the forward
secrecy of the data outsourced to CS.

In terms of backward secrecy, a user who desires
to upload redundant data that exists in CS should be
prevented from obtaining the plaintext of that data before
taking ownership. When the user outsources the duplicated
data, CS performs ownership management for that data
as above and maintains the updated ciphertext pair
C′′ ← EncSE(DecSE(C′, DecPE(Ck, Pc)), k

′
c) and C′

k ←
EncPE(k′

c, A). Then, although the user may obtain the
previous ciphertext C′, it cannot be decrypted since his/her
privilege key cannot meet the policy A embedded in C ′.
Only users who have undergone ownership management can
access and decrypt that data. Thus, the proposed scheme
ensures the backward secrecy of the outsourced data in CS.

5.2.4 Collusion resistance

To ensure the collusion resistance of the proposed scheme,
unauthorized users should be prevented from decrypting the
data with their invalid privilege keys even if they collude.
In the CP-ABE encryption scheme employed for PE, the
privilege keys are constructed with a personalized random
value. Even if a malicious user combines his/her privilege
key with that of others to satisfy the access policy embedded
in the ciphertext, he or she cannot decrypt and obtain the
plaintext because each random number encapsulated in the
privilege keys is different [33]. Thus, the proposed scheme
is secure against collusion attacks.

5.3 Performance analysis

We introduce the results of a performance analysis of our
scheme as compared to Dekey in terms of reliable key
management and Hur et al.’s scheme [11] in terms of
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Table 2 Computation costs
Scheme CEK management Ownership management

CEK CEK Data Key

distribution retrieval re-encryption re-encryption

Dekey [17] N·(Sha + RE + RD) N·(RE + RD) – –

Hur et al. [11] – – ES + DS G·ES

Proposed P + 2PE + MG + XG PE + MG + XG ES + DS EP + DP

ownership management. Regarding CEK management, we
assume that cloud storage servers in Dekey play the role of
fog devices for a fair comparison.

5.3.1 Computation costs

Table 2 lists the comparison results of the computation
costs of the three schemes. In Table 2, the notations
are defined as follows: P and PE are the bilinear map
function and the pairing exponentiation, respectively, MG

and XG are multiplication and XOR operations on group
GT , Sha is the SHA-256 hash function, RE and RD

are RSA encryption/decryption, EP and DP are privilege-
based encryption/decryption, and ES and DS are symmetric
encryption/decryption, respectively.

In terms of CEK management, the computation costs
for building secure channels grow with the number of FDs
because Dekey must set additional secure channels with
distributed FDs to transmit the key shares to guarantee
their privacy. By contrast, our scheme provides a consistent
computation cost regardless of the number of FDs because
independent secure channels for distributing and restoring
key shares are not needed.

In terms of ownership management, Hur et al.’s scheme
[11] and the proposed scheme have a single symmetric
encryption/decryption cost for re-encrypting the cipher-
text. In addition, Hur et al.’s scheme has to encrypt the
key G times using symmetric encryption, while the pro-
posed scheme performs a single PE encryption/decryption,
which is more computationally expensive than symmetric
encryption.

5.3.2 Communication costs

Table 3 compares the communication costs of the three
schemes. First, with respect to CEK management, the
elements that determine the cost of Dekey are consistently
affected by the number of FDs.

Based on Table 4, the communication costs are measured
in bytes and we can acquire the communication costs in
Dekey and the proposed scheme as follows:

Proposed scheme : (N×512)+(log2(data/32)×32) + 96

Dekey : N × {(log2(data/32) × 32) + 192}.

Figure 5a and b illustrate the communication costs of CEK
management using the above equations when the number of
FDs holds at 5 or 15 with different data sizes (that is, 26KB,
27KB, 28KB, 29KB or 210KB). According to Fig. 5a and
b, our scheme has better communication performance than
that of Dekey if the size of the data is greater than 312KB
when there are 5 FDs and 64KB when there are 15 FDs.
Thus, the size of the data for which our scheme can be more
scalable and efficient than Dekey decreases as the number
of FDs increases.

Next, we compare the communication costs related to
personal keys that are necessary for ownership management
on the client side with different numbers of users.
Figure 5c illustrates the communication cost of ownership
key distribution as the number of the universe of users in
the system varies from 5000 to 25000 when the number of
data owners is 10. As shown in Fig. 5c, the communication

Table 3 Communication costs
Scheme CEK CEK Ownership key

distribution retrieval distribution

Dekey [17] N ·SEnc(s), N ·Sroot , N ·SEnc(s) –
N ·SPoW , N ·Stag

Hur et al. [11] – – (U−M)· log2

(
U

U−M

)
· Skek

Proposed SPoW , N ·Sshare, Sidx , Spair , Sidx , Spart ,
Sek+M·Sattr

Spair , Sroot , Spart N ·SEnc(s)
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Table 4 Notations and their
sizes Notation Description Size (Byte)

N Number of FDs that maintain the shares –

U Number of users in the system –

M Number of owners in an ownership list for a file –

G Number of KEKs selected for ownership management –

Ssk, Spk Size of user’s private key and public key 16

Spair Size of pairing element 16

Spart Size of partial 16

Su Size of common secret value 16

Sidx Size of index 32

Stag Size of tag 32

SEnc(s) Size of ciphertext of key share 128

Sshare Size of key share 512

SPoW Size of overall hash block used in PoW 32× log2
(

data
32

)

Sroot Size of root value of Merkle tree 32

Skek Size of KEK 16

Sek Size of encrypted key 324

Sattr Size to increase when adding attributes 274

overhead of Hur et al.’s scheme increases linearly because it
is affected by the number of users registered in the system.
Even if the number of data owners is the same, the overhead
depends on the total number of users. By contrast, our

scheme has fixed communication overhead regardless of the
number of universe of users in the system.

Therefore, with respect to CEK management and
ownership management communication costs, our scheme

Fig. 5 Communication cost
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Fig. 6 Computation cost
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is more efficient and scalable as the number of the
distributed FDs and the universe of users increase.

5.3.3 Implementation

In order to analyze the computation costs on the prototype,
we implemented a CEK and ownership management
system. We deployed PBC library version 0.5.14 [27] to
compute the three key components using pairing-based
cryptography and the EVP library of OpenSSL version
1.0.2c [26] to compute the tag using SHA-256 and to
build the secure channels (in Dekey) using RSA encryption,
respectively. We implemented the secret sharing scheme
using Jerasure version 1.2 [28] as an erasure coding library
for the C language. We assigned the Cauchy matrix to the
erasure code type and established the parameters n, k, r of
the secret sharing scheme as follows: n is the number of
FDs, k is half of n, and r is the default value of k − 1.
For ownership management, we leveraged the CP-ABE
open source library [33] with a Type-A curve parameter for
privilege-based encryption/decryption and AES-128 in CTR
mode for symmetric encryption/decryption. We conducted
experiments using a Linux 3.13.0–24 generic OS (64bit) on
VMware Player version 6.0.3 [29]. The CPU was an Intel
core i7-4500U (1.80GHz) with 1GB RAM.

When the number of FDs increases from 10 to 50
in increments of 10, Fig. 6a and b indicate the key

management performance for the CEK distribution and
retrieval of Dekey, and the proposed scheme including and
excluding the secret sharing scheme. As shown in Table 2,
without the secret sharing phase, our scheme exhibits fixed
computational costs even if the number of FDs increases.
By contrast, that of Dekey linearly increases as the number
of FDs increases. Thus, although the secret sharing phase
is combined, the overall performance results show that
our scheme presents more scalable and efficient CEK
management than Dekey regardless of the number of FDs
while preserving the security of the key components without
establishing a secure channel. Next, Fig. 6c indicates the
ownership management performance of Hur et al.’s scheme
[11] and the proposed scheme for re-encryption/decryption
of ciphertext (Re-enc C and RE-dec C) and key (Re-enc K
and Re-dec K). Even if the cost of key re-encryption of the
proposed scheme is higher than that of Hur et al.’s scheme
(ours: 58.461 ms, Hur et al.’s scheme: 0.024 ms), this is an
inevitable trade-off to reduce the communication cost on the
client-side.

6 Conclusions

We presented a secure deduplication scheme for fog com-
puting that features reliable and scalable CEK management
and provides dynamic ownership management. We divide
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the CEK into three key components, a pairing key, shared
secret, and partial key, and we improved both the reliability
and scalability. By employing pairing-based cryptography,
we allowed the three key components to be sent via public
channels while preserving their privacy. By adopting a re-
encryption technique using privilege-based encryption, we
reduced the communication costs on the user side when the
number of users in the system dynamically changes. The
results of a security and performance analysis demonstrate
that our scheme is more secure and scalable than previous
schemes.
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